Starburst and AGNs
Chapter 21
Starburst Galaxies

• More than 100 stars/year are formed
• Look funny due to high number of star forming clouds
• Higher birth rate means higher death rate
 – Leads to fast galactic winds
 – Galactic winds in small galaxies causes star formation to halt

Causes

• Structure implies collisions
 – Streamers
 – Dusty molecular clouds
 – Two distinct clumps of stars in center
• Close encounters

Active Galaxies
Strange Objects

• Start in 1936 with Grote Reber
• Built first Radio Telescope
 – Backyard in Illinois
• By 1944 he had 3 strong radio sources
• These objects are labeled with constellation name and a letter
 – Sagittarius A
 – Cassiopia A
 – Cygnus A

What Were These Objects?

• Further investigation found Sag A and Cas A were within the Milky Way:
 – Sag A was the center of the Milky Way
 – Cas A was found to be a supernova remnant
• But what about Cyg A?
• Walter Baade and Rudolph Minkowski
 – Palomar 200” telescope
 – They found a strange looking galaxy
The Spectrum of Cyg A

- Instead of finding the absorption spectrum of a normal galaxy they found emission lines
- The lines were redshifted 5.7%
 - In other words a recessional velocity of 17,000 km/sec
- Using Hubble’s Law puts this object at about 750 Million ly = 230 million pc

Distance and Output

- How can an amateur telescope find an object so far away?
- It turns out that Cyg A puts out 10 million x’s more radio energy than M31
- What could be putting out that much energy from an apparently normal galaxy?

3C Catalogue

- In 1959 the 3C catalogue was published
- In contained 471 strong radio sources
- In 1960 Allen Sandage looked at 3C 48
- Instead of finding a strange galaxy at the coordinates he found a ‘star’

A Star?

- Stars don’t put out strong radio signals
- A spectrum was once again taken
 - This again showed emission lines
 - Couldn’t identify the lines this time
- Some thought it was just a strange star in our own galaxy

The Mystery

- In 1962 astronomers looked at 3C 273 and found what appeared to be a blue star
 - Unfortunately the emission spectrum was unidentifiable
- In 1963 Maarten Schmidt at CalTech realized the emission lines were known lines
 - Redshifted Hydrogen lines
 - About 15% the speed of light
 - This implies 2 billion ly = 614 million pc
Quasars

- A star 614 million pc away could never be seen
 - 3C 48 was found to be 4 billion ly (1.2 billion pc) away
- These objects had two main characteristics
 - Strong Radio Sources
 - Looked like stars

Quasars

- Names:
 - 1) Quasi-stellar Radio Sources
 - 2) Quasars
 - 3) Quasi-stellar Objects
 - 4) QSO’s
- We now know only about 10% of quasars are ‘radio-loud’
- However the name has stuck
- More than 10,000 quasars are now known to exist

Quasar Redshifts

- The current QSO redshift range: $0.06 < z < 7.00$
- Most have redshifts of 0.3 or more
- Example
 - the redshift of PC1247+3406 is 4.897 or 94% of the speed of light
 - This is roughly 3 billion pc (10 billion ly) from the Earth
 - The light left 5 billion years before the Sun was formed!

Quasar Redshifts

- There are no nearby quasars
- The closest is 800 million ly = 245.27 Mpc
- Quasars are objects from an earlier era in the history of the Universe
- They give us clues to the early Universe

Clues to the Nature of Quasars?

- Quasar have turned out to be associated with remote galaxies from HST photos
 - Radio-quiet quasars in spirals
 - Radio-loud quasars in ellipticals
Clues to the Nature of Quasars?
• Spectra of Quasars are unique in the fact that they show non-blackbody emission
 – They have energy source other than thermal radiation
• This can come from Synchrotron Radiation
 – Production of synchrotron radiation could be evidence for an accretion disk around a blackhole

Other Active Galaxies
• To further our understanding of the nature of quasars we need to look at other active galaxies
• We will discuss
 – Seyferts
 – Radio Galaxies
 – Blazars

Closer Quasars?
• Are there any objects similar to quasars which are closer?
• Yes
 – Seyfert galaxies, radio galaxies, blazars
 – We will start with Seyfert galaxies which provide a logical bridge between quasars and normal galaxies

Seyfert Galaxies
• Spiral galaxies with very compact nuclei
 – Extra bright nuclei
 – They had strong emission lines like the quasars
• Other characteristics
 – Radio Emission (on the quiet side)
 – X-ray emission

Seyfert Galaxies
• About 10% of the brightest spirals are Seyferts
• 700 Currently known
• Range in brightness from the faintest quasars down to normal galaxies
Radio Galaxies

• Seyferts have a counterpart
• Active elliptical galaxies are called Radio Galaxies
• The first of these galaxies was discovered in 1918 by Heber Curtis
• He found a bright nucleus and a jet of material

M87

• From HST images we know that the jet extends for 5000 lightyears
• The jet is synchrotron radiation

Radio Lobes

• In the 1960’s and 1970’s astronomers systematically examined extragalactic radio sources
 – Most radio galaxies have two Radio Lobes with a giant elliptical galaxy at the center
 – The lobes were 5 to 10 times the size of the parent galaxy
 – These are sometimes called Double Radio Sources

Head-Tail Radio Sources

• There are some radio galaxies with a ‘head’ of strong radio emission and a ‘tail’ of weaker emission trailing behind

Blazars

• These are similar to quasars with extraordinary variability
 – The first of these new objects was BL Lacertae
• However, BL Lac had no features in its spectrum
• Images showed a faint fuzz around BL Lac which turned out to be an elliptical galaxy

Blazars

• They also show variations which can be as large as 5 magnitudes
• They are radio sources
• They are probably double lobe sources seen end on so we are looking down the jet
The Engines

• What kind of object could drive all these amazing galaxies?
• The variability of Blazars gives us a clue
• The period of variation is related to the size of the changing object
 – If the period is 1 year then the size of the object can’t be larger than 1 lightyear
• This is called a Light Time Argument

The Engines

• In 1968 Donald Lynden-Bell theorized about blackholes lurking in the center of galaxies
 – The potential energy of material falling into the blackhole could be turned into radiation
• This blackhole would be about the size of our solar system
• This would explain the Active Galactic Nuclei

Supermassive Blackholes

• A supermassive blackhole would contain millions or billions of solar masses
• There is also evidence of blackholes in a number of nearby galaxies

A Unified Model

• Could the various AGN’s be explained by the presence of a blackhole in their centers?
• The fact that there are no nearby Quasars might simply be that the fuel has run out or decreased enough to lessen the output

Viewing Directions - Elliptical

• End on jet - Blazar (BL Lac)
• From end on jet to about 45 degrees - Quasar
• Close to edge on - Radio Galaxy
Viewing Directions – Spirals

• Two types of Seyfert galaxies
 – Type I
 • Have both broad and narrow spectral lines
 • An end-on view
 • Sees the blackhole
 – Type II
 • Have only narrow emission lines
 • Edge-on seeing the disk